
Rendering Mirage
Team 3 Seo Hansol, Lim Mingi

CS482 Fall 2018 Final Presentation

1



DEMO

2



Contents
● Artistic Editing For Mirage Image

● Our Idea

● Challenges

● Implementation

3



Artistic Editing 
For Mirage Image 

4



Adapt APM[GSM*06] as a spatial encoding

Refractive Index Distribution Model

5This slide is copied 
from slides of [Choi 17]



New formulation suggested for the refractive index 
distribution: Logistic Approximation

Refractive Index Distribution Model

6



Spatial Encoding and Optimization
● Cost Function

○ For i-th pair, spatial encoding L, and parameter vector k

○ solve by Regression

7This slide is copied 
from slides of [Choi 17]



Rendering method
● Ray-marching algorithm

8[ABW14]



Limitations
● This system is focused on creating static scenes

○ This formulation does not consider the spatial 
location of the hot spot

● Unintuitive UI
● No illumination model

⇒ Unrealistic mirage scenes

9



Our Ideas

10



Areal Hot Spot

11



Areal Hot Spot
● Hot spot is no longer depends on only height

● Hot spot has a circular shape that can be defined on the 

surface.

● user can modify its x, z position and radius.

● Optimize additional parameters using the existing 

optimizer

● By changing the formula to take into account the area 

of ​​the hot spot, You can observe a light path that 

changes spatially. 12



Areal Hot Spot

13



Areal Hot Spot
● Save hotspot information additionally

● Sigmoid as the reduction function in distance

● We introduce new logistic formula to compute areal hot 

spot exactly.

● We newly compute a derivative of our new logistic 

function because we use RK4 method to estimate the light 

path.

14



Areal Hot Spot
● important point

○ formula 1 : new hotspot

○

○ formula 2 : derivative of new hotspot

○ previous : 1D formula(h), current : 3D formula(x,y,z)

○ And their counterparts in fragment shader

15



Areal Hot Spot

16
RK4 method



Areal Hot Spot

17



Areal Hot Spot

18



Areal Hot Spot
●

19



Areal Hot Spot
●

20



UI Improvements

21



Better UI
● Point positioning

○ Points can be off surface

22Original Ours



Better UI
● Free movement during point assignment

23Original Ours



Better UI
● Camera positioning

○ “C” key for camera positioning

24



Challenges

25



Code
● Building the code was an unexpected difficulty
● Fortunately the code itself was modular enough

● Required knowledge about SDL2, OpenGL, GLSL

26



UI
● Original UI was not suitable for our testing
● Freer camera
● Point movement
● New UI components for hot spot handling

27



Numerical Error
● C++’s floating point arithmetic is not very reliable.
● exp(x) / exp(x) + 1 is NAN when x > ~80.
● Hard to find problem, better check early.

28



3-dimensional Extension
● Refractive radiative transfer equation & Runge-Kutta 

method from original code is dependent only on altitude 
(y axis).

● Our areal hot spot involves all three dimension.
● Need to understand RRTE & RK4, then extend it to 3D.

29



OpenGL & Shader
● Shader does not have “array-like” object
● Should use texture for variable length data (hot spots)
● 6x1024 2D texture can hold up to 1024 hot spots

30



OpenGL & Shader
● Shader does not have “array-like” object
● Should use texture for variable length data (hot spots)
● 6x1024 2D texture can hold up to 1024 hot spots

● Debugging shader
○ NAN, again
○ Shader cannot “print” or “log”, as it is run on GPU
○ Always watch out the typo

31



Remaining Problems

32



Restrictions on Hot Spot
● Hot spot shape is currently circular only

○ Need several circular hot spots for other shapes
● Hot spot position is currently on surface only

○ Possibly hot spot can be on mid-air for more effect
○ Or optimizer may be able to optimize hot spot position

33



Quality of Mirage
● For high quality image, user should specify “good” pairs of 

source/destination points
● Optimization dilemma

○ More pairs, higher quality, slower speed
○ Less pairs, faster speed, lower quality

● Optimizer is somewhat unpredictable
○ Finding out optimizer-friendly pairs is difficult
○ Wave-like overfitting: background + inversion layer

34



Members & Roles
● Seo Hansol : Presentation, UI Improvement, Areal Hot 

Spot Improvement, Shader Implementation

● Lim Mingi : Presentation, Areal Hot Spot Implementation

35



Q & A

36



Runge-Kutta Method
t_new = t + h

Use k1, k2, k3, k4

k1 = h * y’ (t, y)

k2 = h * y’ (t+h/2, y+k1/2)

k3 = h * y’ (t+h/2, y+k2/2)

k4 = h * y’ (t+h, y+k3)

y_new = (k1+2*k2+2*k3+k4) / 6

37Image by HilberTraum
From https://commons.wikimedia.org/wiki/File:Runge-Kutta_slopes.svg

https://commons.wikimedia.org/w/index.php?title=User:HilberTraum&action=edit&redlink=1

